機(jī)器主宰工廠這件事,遠(yuǎn)比你想的近

以奧迪在德國的內(nèi)卡蘇爾姆組廠為例,就擁有超過2500個工業(yè)機(jī)器人,其中有900個專門負(fù)責(zé)點(diǎn)焊作業(yè),每天總共要處理超過1000臺商用車,每臺汽車的點(diǎn)焊大概有5000個,算下來這些點(diǎn)焊總共多達(dá)500萬個。

充滿金屬氣息的流水線上,十幾個機(jī)械手齊齊舞動,霎時間火花四濺——是最典型的現(xiàn)代化汽車生產(chǎn)畫面,經(jīng)常會被電視作為高科技的代表播出的那種。

以奧迪在德國的內(nèi)卡蘇爾姆組廠為例,就擁有超過2500個工業(yè)機(jī)器人,其中有900個專門負(fù)責(zé)點(diǎn)焊作業(yè),每天總共要處理超過1000臺商用車,每臺汽車的點(diǎn)焊大概有5000個,算下來這些點(diǎn)焊總共多達(dá)500萬個。

這么多機(jī)器加工的點(diǎn)焊,如何確保質(zhì)量?與上下飛舞的機(jī)器人焊接場面不同,檢查的過程看起來卻很“笨”:每天將一輛汽車送到18位工程師的手上,用超聲波探測一點(diǎn)一點(diǎn)檢查焊接的質(zhì)量。

如此鮮明的對比,恰恰體現(xiàn)了制造業(yè)傳統(tǒng)和未來的那條“分割線”。

全球車企都頭疼的問題,是這樣被解決的

之所以奧迪會選擇1000臺之中只抽1臺,并不意味著人們對于機(jī)器加工的完全信任,而是檢查的成本實(shí)在太高。1臺車就要18個專家,那1000臺車豈不是需要18000名專家。

在赤裸裸的數(shù)字面前,人們只能選擇投入更多前期建設(shè)、維護(hù)整個加工過程的穩(wěn)定性,這也是為什么工廠中經(jīng)常有造價(jià)昂貴(數(shù)百萬、數(shù)千萬)、恒溫恒濕防震的加工環(huán)境。

另外一方面,尤其是像點(diǎn)焊這樣加工數(shù)量眾多的加工項(xiàng)目,機(jī)器并沒有大家想象中的“靠譜”,假設(shè)每次點(diǎn)焊加工的失誤率僅為十萬分之一,但一臺車5000個加工點(diǎn)算下來,仍有5%左右的概率會出現(xiàn)失誤。

現(xiàn)實(shí)中的數(shù)據(jù)也很能說明問題,根據(jù)市場監(jiān)管總局今年3月公布的數(shù)據(jù),2019年因?yàn)檐嚿碣|(zhì)量問題,中國就召回了33萬輛乘用車。這個數(shù)字在全年超2000萬臺乘用車的總銷量中看起來只算很小一部分,但足以證明傳統(tǒng)汽車制造業(yè)在經(jīng)過上百年的不斷進(jìn)化之后,仍存在比較明顯的“天花板”。

汽車制造技術(shù)和能力止步”天花板“,再加上大環(huán)境因素的影響,讓整個汽車制造業(yè)挑戰(zhàn)重重。去年年底,以在美國建廠的福耀玻璃為采訪對象的Netflix紀(jì)錄片《美國工廠》,在中國互聯(lián)網(wǎng)上爆紅,引發(fā)了廣泛的討論。

拋開中美文化、企業(yè)管理制度這些最熱的話題,其實(shí)它很好地展現(xiàn)了全球汽車制造業(yè)當(dāng)下面臨的一部分困境——制造業(yè)人工成本不再像之前那么容易下降,機(jī)器人技術(shù)不適用于所有場景、而且在生產(chǎn)力之外也帶來了新的挑戰(zhàn)。

開篇中奧迪所面臨的問題就非常典型,好在奧迪在一位神秘伙伴“神秘伙伴”的幫助下很快找到了解決方法:在加工過程中引入全新測量的數(shù)值,通過機(jī)器學(xué)習(xí)訓(xùn)練算法,形成一整套全新的質(zhì)量判定標(biāo)準(zhǔn),邊加工邊做質(zhì)量檢查。

這個解決方法聽起來簡單,但內(nèi)在的創(chuàng)新實(shí)在不少,以新增的數(shù)據(jù)為例:工業(yè)機(jī)器人是智能化的,以往的質(zhì)量監(jiān)測數(shù)據(jù)往往來自它,例如點(diǎn)焊過程中位置是否精準(zhǔn),機(jī)器人是否運(yùn)動出現(xiàn)故障等等。

相對應(yīng)的,實(shí)際完成焊接動作的焊槍,卻是非數(shù)字化的,第一步改造的重點(diǎn)就是為這些焊槍加上控制器,并且接入網(wǎng)絡(luò)。

除了焊槍之外,解決方案中還引入了焊縫配置、焊接金屬類型、焊條健康狀況等數(shù)據(jù),并利用AI最終找出下一步就是找出規(guī)律——如何才能確保焊接的質(zhì)量。

從焊槍中收集而來的數(shù)據(jù),與焊接后的人工檢查數(shù)據(jù)被一同輸入計(jì)算機(jī),通過機(jī)器學(xué)習(xí)訓(xùn)練算法的預(yù)測能力,增加其準(zhǔn)確度。

單就這個解決方案而言,所需要的能力不小且復(fù)雜:

首先是加工設(shè)備焊槍的改造,需要在終端部署一定量計(jì)算力和網(wǎng)絡(luò)通信的能力;

其次是一條流水線上,數(shù)臺機(jī)器人共同作業(yè)時,各自數(shù)據(jù)采集、邊緣計(jì)算,最終再將結(jié)果匯總的能力;

最后是整體的運(yùn)維統(tǒng)籌能力,所有機(jī)器人的數(shù)據(jù)在邊緣計(jì)算處理之余,還得匯總到一起,數(shù)據(jù)匯總的儀表板可幫助奧迪員工直觀查看數(shù)據(jù),并且系統(tǒng)會在檢測到焊縫缺陷或潛在配置變化時提醒技術(shù)人員,以最大限度減少或消除缺陷。

協(xié)助奧迪完成這么大一個挑戰(zhàn)的伙伴不是別家,就是全球半導(dǎo)體業(yè)巨頭英特爾。在內(nèi)卡蘇爾姆工廠進(jìn)行的機(jī)器人升級,就是英特爾和奧迪在合作進(jìn)行概念驗(yàn)證(POC)試驗(yàn)。

雖然只是一次試驗(yàn),但效果依舊十分明顯。奧迪的生產(chǎn)計(jì)劃、自動化和數(shù)字化負(fù)責(zé)人Michael H?ffner就專門表示,通過這次試驗(yàn),生產(chǎn)線上勞動力成本降低了30%到50%。

更為關(guān)鍵的是此次試驗(yàn)的內(nèi)容,完全可以作為一種基礎(chǔ)性技術(shù),擴(kuò)展到汽車生產(chǎn)的其他環(huán)節(jié)中去,如鉚接、涂膠和噴漆等等。

橫向拓展能力的基礎(chǔ)主要有兩點(diǎn),一是英特爾打造工業(yè)互聯(lián)網(wǎng)時的硬件基礎(chǔ),各種不同的工業(yè)解決方案都是運(yùn)行在英特爾的X86處理器上,而英特爾X86處理器自身從邊緣到云計(jì)算的廣泛布局,讓其工業(yè)互聯(lián)網(wǎng)解決方案極具擴(kuò)展能力。

另一方面在于英特爾在工業(yè)互聯(lián)網(wǎng)上的提前投入,在奧迪解決方案中,便使用了英特爾的“Industral Edge Insights(下文簡稱IEI)”軟件。這套軟件本身就著眼于工業(yè)中的各種場景,通過與英特爾自身靈活的硬件基礎(chǔ)結(jié)合,幫助客戶更快完成數(shù)據(jù)收集、存儲和分析,降低工業(yè)互聯(lián)網(wǎng)的門檻。

解決方案拓?fù)鋱D

仍以焊接這個任務(wù)為例,英特爾還和國內(nèi)公司信捷點(diǎn)氣合作,研發(fā)了一款完全通過3D機(jī)器視覺實(shí)現(xiàn)的焊接解決方案,能夠完成很多以往非智能解決方案無法完成,必須依賴人工的焊接任務(wù)。

制造業(yè)的下一步,應(yīng)該是什么樣子?

作為決定人類生活水平的前提,制造業(yè)的發(fā)展注定沒有終點(diǎn)只有更遠(yuǎn)的遠(yuǎn)方。這個不斷前進(jìn)的過程中,最關(guān)鍵的是找到未來的核心趨勢。

日本在上世紀(jì)70、80年代瘋狂地將各種機(jī)器人技術(shù)引入了機(jī)械、電子、汽車為代表的制造業(yè)。時至今日,日本的機(jī)器人保有量雖持續(xù)下滑,但仍牢牢占據(jù)世界第二的位置。這背后所對應(yīng)的就是日本對于制造業(yè)發(fā)展的判斷:

一是機(jī)器人在完成高精尖的制造任務(wù)時有先天優(yōu)勢;

二是日本是全球少子化、人口老齡化最嚴(yán)重的國家,機(jī)器人可以極大幅度解決勞動力問題。

問題來了,從當(dāng)下趨勢看,制造業(yè)未來的核心是什么?

傳統(tǒng)機(jī)械化主導(dǎo)的制造業(yè)發(fā)展已趨于完善,基礎(chǔ)的數(shù)字化手段開始往更高級、更系統(tǒng)的數(shù)字化階段邁進(jìn),而傳統(tǒng)死板的自動化手段應(yīng)用場景始終受限,通過給計(jì)算機(jī)喂數(shù)據(jù)來實(shí)現(xiàn)編程的機(jī)器學(xué)習(xí)有望大規(guī)模應(yīng)用。幾個點(diǎn)結(jié)合起來看,可以歸納為一句通俗易懂的話——機(jī)器注定將會在更多的制造場景和領(lǐng)域中,全面超越人工。

去年,富士康曾聯(lián)合億歐智庫、騰訊云共同發(fā)布了一份白皮書,其中提到中國制造業(yè)轉(zhuǎn)型升級,內(nèi)里最關(guān)鍵的是要構(gòu)筑卓越制造體系。

具體一點(diǎn)的內(nèi)容包括精細(xì)化管理和決策、動態(tài)需求和資源規(guī)劃管理、柔性生產(chǎn)、全價(jià)值鏈的可追溯性等等。這些小的要點(diǎn)都需要強(qiáng)大的數(shù)字化能力支撐,例如動態(tài)需求和資源規(guī)劃管理,需要構(gòu)建統(tǒng)一的數(shù)據(jù)治理體系,又比如長期被作為工業(yè)4.0代表的柔性制造,就需要多機(jī)協(xié)同的工業(yè)互聯(lián)網(wǎng)架構(gòu)。

在這個過程中,英特爾扮演的角色,就是和自己的合作伙伴一起,將自己主導(dǎo)的軟硬件乃至更上層的生態(tài),實(shí)打?qū)嵉赝茝V到更多工業(yè)實(shí)際應(yīng)用中去。

THEEND

最新評論(評論僅代表用戶觀點(diǎn))

更多
暫無評論