本文來(lái)自微信公眾號(hào)“電子發(fā)燒友網(wǎng)”,作者/李彎彎。
顯存,是顯卡上用于存儲(chǔ)圖像數(shù)據(jù)、紋理、幀緩沖區(qū)等的內(nèi)存。它的大小直接決定了顯卡能夠同時(shí)處理的數(shù)據(jù)量。
在AI計(jì)算中,顯存的大小對(duì)處理大規(guī)模數(shù)據(jù)集、深度學(xué)習(xí)模型的訓(xùn)練和推理過(guò)程至關(guān)重要。足夠的顯存容量能夠確保顯卡在執(zhí)行AI任務(wù)時(shí)能夠同時(shí)存儲(chǔ)和操作所需的數(shù)據(jù),避免因?yàn)轱@存不足而導(dǎo)致的性能瓶頸。
在AI計(jì)算中如何選擇合適的顯存
顯存對(duì)AI計(jì)算有影響,首先是它可以支持大規(guī)模模型,深度學(xué)習(xí)模型,尤其是那些涉及到大量參數(shù)和復(fù)雜計(jì)算的模型,需要較大的顯存來(lái)存儲(chǔ)模型參數(shù)、中間結(jié)果和計(jì)算圖等。足夠的顯存能夠支持更大規(guī)模的模型,從而提高模型的復(fù)雜度和性能。
其次,它可以加速計(jì)算過(guò)程,顯存的高速訪問(wèn)能力能夠顯著加速數(shù)據(jù)的讀寫(xiě)速度,從而提高計(jì)算效率。在AI計(jì)算中,大量數(shù)據(jù)的頻繁讀寫(xiě)是不可避免的,因此顯存的速度對(duì)整體性能有著重要影響。
第三,如果顯存容量不足,顯卡可能無(wú)法同時(shí)存儲(chǔ)整個(gè)模型或處理的數(shù)據(jù)集,導(dǎo)致需要頻繁地在顯存和主存之間進(jìn)行數(shù)據(jù)交換。這種數(shù)據(jù)交換過(guò)程會(huì)顯著降低任務(wù)的執(zhí)行效率,并增加系統(tǒng)的功耗和延遲。
因此,在顯存的選擇上也需要注意。比如,在選擇顯卡時(shí),需要根據(jù)實(shí)際AI計(jì)算任務(wù)的需求來(lái)選擇合適的顯存大小。對(duì)于需要處理大規(guī)模數(shù)據(jù)集或復(fù)雜深度學(xué)習(xí)模型的任務(wù),應(yīng)選擇具有較大顯存容量的顯卡。
在AI計(jì)算過(guò)程中,可以通過(guò)優(yōu)化算法、調(diào)整模型參數(shù)、減少不必要的數(shù)據(jù)存儲(chǔ)等方式來(lái)優(yōu)化顯存的使用。這有助于在有限的顯存資源下實(shí)現(xiàn)更高的計(jì)算效率和性能。
當(dāng)然,一些先進(jìn)的顯卡技術(shù),如NVIDIA的Tensor Core和AMD的Infinity Fabric等,能夠提供更高的顯存帶寬和更低的延遲,從而進(jìn)一步提高AI計(jì)算的性能。
AI推動(dòng)顯存技術(shù)不斷升級(jí)
在AI加速卡中,顯存是不可或缺的一部分。AI加速卡通過(guò)集成高性能的顯存和計(jì)算單元,實(shí)現(xiàn)對(duì)AI計(jì)算任務(wù)的高效處理。顯存作為數(shù)據(jù)存儲(chǔ)和訪問(wèn)的橋梁,與計(jì)算單元緊密配合,共同提升AI應(yīng)用的性能和效率。
隨著AI技術(shù)的不斷發(fā)展,對(duì)顯存性能的要求在不斷提高。這推動(dòng)了顯存技術(shù)的不斷革新和升級(jí),如GDDR6、HBM等新型顯存技術(shù)的出現(xiàn)。這些新技術(shù)提供了更高的帶寬、更大的容量和更低的功耗,為AI應(yīng)用提供了更強(qiáng)大的支持。
同時(shí),顯存技術(shù)的提升也促進(jìn)了AI應(yīng)用的拓展和普及。例如,在醫(yī)療影像分析、自動(dòng)駕駛、智能制造等領(lǐng)域,AI技術(shù)結(jié)合高性能的顯存設(shè)備可以實(shí)現(xiàn)更精準(zhǔn)、更高效的解決方案。
在顯存技術(shù)的早期,SDRAM是主要的顯存類型。它具有與CPU時(shí)鐘同步的特性,能夠提供比傳統(tǒng)DRAM更高的數(shù)據(jù)傳輸速率。
隨著技術(shù)的發(fā)展,DDR系列顯存逐漸取代了SDRAM。DDR顯存在每個(gè)時(shí)鐘周期內(nèi)能夠傳輸兩次數(shù)據(jù),從而實(shí)現(xiàn)了數(shù)據(jù)傳輸速率的翻倍。DDR系列經(jīng)歷了從DDR、DDR2到DDR3的演進(jìn),每一代都在前一代的基礎(chǔ)上提高了性能和效率。
接著,為了滿足GPU對(duì)高帶寬和高性能的需求,GDDR系列顯存應(yīng)運(yùn)而生。GDDR系列專注于為圖形處理提供更高的帶寬和更低的延遲。作為最早的GDDR顯存,它專為圖形處理而設(shè)計(jì),提供了比DDR更高的帶寬。隨著技術(shù)的發(fā)展,GDDR2和GDDR3相繼推出,每一代都在前一代的基礎(chǔ)上提高了性能和效率。
GDDR5是顯存技術(shù)發(fā)展歷程中的一個(gè)重要里程碑。它采用了更高的頻率、更大的帶寬和更低的功耗設(shè)計(jì),極大地提升了GPU的性能。GDDR5在2012年左右成為主流顯卡的標(biāo)配顯存。
近階段,作為GDDR5的改進(jìn)版,GDDR5X在保持與GDDR5兼容的同時(shí),進(jìn)一步提高了頻率和帶寬。它主要用于高端顯卡和計(jì)算設(shè)備中。
2018年GDDR6出現(xiàn),并首次用于NVIDIA RTX 20系列和AMD RX 5000系列顯卡。GDDR6采用了更高的預(yù)取值(16bit)、更低的運(yùn)行電壓(1.35V)和更高效的封裝模式(180-ball BGA),從而實(shí)現(xiàn)了更高的帶寬和更低的功耗。GDDR6的起始速度為14 GT/s,遠(yuǎn)高于GDDR5和GDDR5X。
GDDR6X是GDDR6的進(jìn)階版本,由NVIDIA用于其更高端的RTX 30和40系列GPU。GDDR6X的起始速度高達(dá)19 GT/s,比GDDR6更快,為高端顯卡提供了更高的帶寬和性能。
寫(xiě)在最后
可以看到,顯存與AI之間存在著相互促進(jìn)的關(guān)系。顯存的性能直接影響到AI算法的執(zhí)行效率和模型的準(zhǔn)確性,而AI技術(shù)的發(fā)展也推動(dòng)了顯存技術(shù)的不斷革新和升級(jí)。未來(lái),隨著AI技術(shù)的不斷發(fā)展,對(duì)顯存的需求將會(huì)持續(xù)增加,同時(shí)也將推動(dòng)顯存技術(shù)的進(jìn)一步發(fā)展。