人工智能能耗問題存挑戰(zhàn) 高通如何巧妙應(yīng)對(duì)?

飛象網(wǎng)
佚名
當(dāng)下,人工智能已經(jīng)深入到經(jīng)濟(jì)和產(chǎn)業(yè)的每個(gè)細(xì)分領(lǐng)域,很多產(chǎn)品也已經(jīng)具備了人工智能的能力,這是積極的一面。但同時(shí),也給我們帶來一些嚴(yán)峻的問題和挑戰(zhàn)。隨著人工智能的發(fā)展,能源消耗的越來越嚴(yán)重,有數(shù)據(jù)預(yù)測到20...

當(dāng)下,人工智能已經(jīng)深入到經(jīng)濟(jì)和產(chǎn)業(yè)的每個(gè)細(xì)分領(lǐng)域,很多產(chǎn)品也已經(jīng)具備了人工智能的能力,這是積極的一面。但同時(shí),也給我們帶來一些嚴(yán)峻的問題和挑戰(zhàn)。隨著人工智能的發(fā)展,能源消耗的越來越嚴(yán)重,有數(shù)據(jù)預(yù)測到2025年,全球的數(shù)據(jù)中心將消耗全球所有可用電力的20%。

此外,深度神經(jīng)網(wǎng)絡(luò)的能耗與其規(guī)模大小也成正比。資料顯示,到2025年,神經(jīng)網(wǎng)絡(luò)的繼續(xù)發(fā)展有望將其規(guī)模擴(kuò)大至100萬億個(gè)參數(shù),相當(dāng)于人類大腦的容量,這樣規(guī)模的神經(jīng)網(wǎng)絡(luò)將消耗大量能源。人類大腦的能效比當(dāng)前最優(yōu)秀硬件的能效要高100倍,因此我們應(yīng)該從大腦得到啟發(fā),發(fā)展能效更高的人工智能技術(shù)。

人工智能的能耗問題具備兩大挑戰(zhàn)

在Qualcomm技術(shù)副總裁韋靈思看來,人工智能的能耗問題存在兩個(gè)重要的挑戰(zhàn)。第一,人工智能創(chuàng)造的經(jīng)濟(jì)價(jià)值和效益必須超過運(yùn)行這個(gè)服務(wù)的成本,否則人們將無法盈利,人們開發(fā)的這些卓越的人工智能技術(shù)也就無所用處。不管是社交網(wǎng)絡(luò)上按用戶喜好排序,或者是個(gè)性化的廣告和推薦,它的應(yīng)用成本都需要控制在一定范圍內(nèi)。此外,人工智能還被應(yīng)用到大型的智慧城市和智慧工廠中,同樣需要控制成本。

Qualcomm技術(shù)副總裁韋靈思

第二,人工智能能效問題也是一大挑戰(zhàn),是因?yàn)樵谶吘墏?cè)也就是移動(dòng)環(huán)境中,還存在散熱的限制。比如說,我們不能在手機(jī)里運(yùn)行能耗過高的任務(wù),否則手機(jī)就會(huì)變得非常熱。但同時(shí),我們需要處理大量的人工智能工作負(fù)載,包括完成非常密集的計(jì)算分析任務(wù)、處理復(fù)雜的并發(fā)性即在一段時(shí)間內(nèi)同時(shí)完成多項(xiàng)任務(wù),還需要保證實(shí)時(shí)和始終開啟,移動(dòng)環(huán)境又有多種多樣的限制條件,比如說終端的尺寸很小,又需要保證長久續(xù)航以支持全天使用。此外,受尺寸影響,移動(dòng)終端的內(nèi)存和帶寬也都有限制。

“所以說,不管是從經(jīng)濟(jì)效益還是熱效率的角度看,我們都必須要降低人工智能運(yùn)行的能耗。” 韋靈思總結(jié)到:“我認(rèn)為未來人工智能算法將不會(huì)由其所能提供的智能多少來衡量,而是要看這種算法每瓦時(shí)所提供的智能多少,這會(huì)成為未來人工智能算法的重要衡量指標(biāo)。在此方面Qualcomm擁有很大的優(yōu)勢,低功耗計(jì)算正是我們一直以來所擅長的。”

Qualcomm在終端側(cè)讓深度學(xué)習(xí)更加高效

深度學(xué)習(xí)是人工智能發(fā)展歷程中的一次重要變革,受神經(jīng)網(wǎng)絡(luò)的大幅發(fā)展所驅(qū)動(dòng),深度學(xué)習(xí)顯著提高了預(yù)測的準(zhǔn)確性。此外,韋靈思表示我們不應(yīng)該從聲音、信號(hào)等大量原始數(shù)據(jù)中人工定義特性,而是應(yīng)該讓算法從原始數(shù)據(jù)中自行學(xué)習(xí)提取特性,這是一個(gè)巨大的突破。神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)還包括,它能夠自動(dòng)探測物體,非常高效地共享參數(shù),使部分?jǐn)?shù)據(jù)更加高效,并且可以在現(xiàn)代硬件上快速執(zhí)行。

當(dāng)然,深度學(xué)習(xí)也有需要改進(jìn)的方面,在韋靈思看來,最重要的一點(diǎn)是,卷積神經(jīng)網(wǎng)絡(luò)使用了太多的內(nèi)存、計(jì)算能力和能源,這是現(xiàn)在急需改善的。此外,神經(jīng)網(wǎng)絡(luò)不具備旋轉(zhuǎn)不變性、不能量化不確定性以及它很容易被輸入側(cè)輕微的改變所欺騙等。

為應(yīng)對(duì)這些挑戰(zhàn),Qualcomm開展了大量的工作。在降低能耗方面,受人類大腦的啟發(fā),Qualcomm早在超過十年前就已經(jīng)開始了脈沖神經(jīng)網(wǎng)絡(luò)的研究,這也是實(shí)現(xiàn)低功耗計(jì)算的一種方法?,F(xiàn)在同樣受人腦的啟發(fā),Qualcomm正考慮利用噪音來實(shí)現(xiàn)深度學(xué)習(xí)方面的低功耗計(jì)算。

韋靈思解釋稱:“人腦其實(shí)是一個(gè)充滿噪聲的系統(tǒng),它知道如何處理噪音。我相信,我們可以更進(jìn)一步利用噪音來為神經(jīng)網(wǎng)絡(luò)帶來益處。在專業(yè)領(lǐng)域,我們將這種方法稱為貝葉斯深度學(xué)習(xí),這也是我們實(shí)現(xiàn)這一切的重要基礎(chǔ)性框架。通過貝葉斯深度學(xué)習(xí),我們把神經(jīng)網(wǎng)絡(luò)壓縮得更小,使其可以更高效地運(yùn)行在驍龍平臺(tái)上。我們還通過使用這一框架,量化我們需要進(jìn)行的計(jì)算處理的比特位。”

談及這些噪音如何幫助我們進(jìn)行壓縮和量化時(shí),韋靈思講到,我們將噪聲引入到神經(jīng)網(wǎng)絡(luò),繼而影響到各個(gè)參數(shù)和連接,然后這些擾動(dòng)的參數(shù)將噪聲傳播到激活節(jié)點(diǎn),也就是各個(gè)神經(jīng)元。如果這些神經(jīng)元充滿了噪音、不存儲(chǔ)任何信息、或?qū)︻A(yù)測不能發(fā)揮任何作用,我們就對(duì)其進(jìn)行裁剪。通過裁剪神經(jīng)元,神經(jīng)網(wǎng)絡(luò)會(huì)變得更小,從而在計(jì)算機(jī)和驍龍平臺(tái)上也將會(huì)運(yùn)行得更快。

剛剛談到了使用貝葉斯框架進(jìn)行壓縮與量化,事實(shí)上它還可以解決許多其他問題。如果神經(jīng)網(wǎng)絡(luò)只進(jìn)行過面向某一場景的訓(xùn)練,例如一臺(tái)自動(dòng)駕駛汽車只接受過某一城市的相關(guān)訓(xùn)練,現(xiàn)在這臺(tái)汽車來到另一個(gè)新的城市,你可以使用貝葉斯深度學(xué)習(xí)進(jìn)行泛化。Qualcomm的思路是,能夠?qū)?shù)據(jù)做出解釋的最小、最簡單的模型即為最適合的模型,這就是奧卡姆剃刀。貝葉斯學(xué)習(xí)還可以幫助我們產(chǎn)生置信估計(jì),即量化神經(jīng)網(wǎng)絡(luò)的不確定性。當(dāng)我們加入噪聲,噪聲將傳播至預(yù)測,從而產(chǎn)生預(yù)測的分布區(qū)間,由此完成對(duì)預(yù)測置信度的量化。最后,貝葉斯學(xué)習(xí)可以幫助我們不易遭受對(duì)抗攻擊,即通過輸入側(cè)的輕微改變來得到不同的預(yù)測結(jié)果。它也有助于保護(hù)用戶的個(gè)人隱私,因?yàn)閿?shù)據(jù)信息可以轉(zhuǎn)換為模型參數(shù)甚至可以進(jìn)行重構(gòu),使得數(shù)據(jù)具有隱私敏感度。所以說通過加入噪聲,可以很好地幫助我們保護(hù)隱私??傮w而言,貝葉斯深度學(xué)習(xí)可以很好地解決深度神經(jīng)網(wǎng)絡(luò)所面臨的諸多挑戰(zhàn)。

“隨著壓縮比越來越大,貝葉斯深度學(xué)習(xí)相比于其他方法的性能優(yōu)勢就越明顯,其在移動(dòng)平臺(tái)上的運(yùn)行也更為高效,這就是為什么我們認(rèn)為貝葉斯深度學(xué)習(xí)尤其適合移動(dòng)場景。” 韋靈思進(jìn)一步講到。

此外,據(jù)介紹,目前Qualcomm異構(gòu)計(jì)算系統(tǒng)中包括了三個(gè)組件,分別是CPU、GPU和DSP。超過十年來,在每一個(gè)產(chǎn)品研發(fā)周期內(nèi),Qualcomm都從多個(gè)維度持續(xù)提升這三大組件。舉例來說,在緩存結(jié)構(gòu)(caching structure)上,Qualcomm不斷優(yōu)化內(nèi)存工作方式;持續(xù)優(yōu)化精確性,通過最低的能耗實(shí)現(xiàn)對(duì)精確度優(yōu)化;優(yōu)化計(jì)算管理,比如說當(dāng)有一個(gè)計(jì)算任務(wù),可以選擇讓GPU、CPU或是DSP完成,或者讓所有組件共同完成。雖然目前只對(duì)單一終端上的計(jì)算進(jìn)行管理,但Qualcomm有更遠(yuǎn)大的愿景,在即將到來的5G時(shí)代,Qualcomm將在萬物互聯(lián)的環(huán)境下,將計(jì)算放在由終端及云端組成的整個(gè)網(wǎng)絡(luò)中運(yùn)行,為網(wǎng)絡(luò)邊緣帶來強(qiáng)大的人工智能系統(tǒng)。”

Qualcomm三層努力加速人工智能研究

在加速人工智能研究方面,Qualcomm也做了很大的努力,包括對(duì)計(jì)算架構(gòu)、內(nèi)存層級(jí)及使用層面的優(yōu)化和提升。在計(jì)算架構(gòu)方面,Qualcomm專注于優(yōu)化指令類型和并行性,以及優(yōu)化運(yùn)行計(jì)算所需的精確度,貝葉斯深度學(xué)習(xí)可以幫助實(shí)現(xiàn)最佳的運(yùn)行精確度。同樣重要甚至更為重要的是內(nèi)存層級(jí)。據(jù)估計(jì),從DRAM遷移數(shù)據(jù)或?qū)?shù)據(jù)遷移至DRAM的功耗,是ALU運(yùn)算(ALU Operation)功耗的200倍,因此,需要優(yōu)化內(nèi)存層級(jí)以降低數(shù)據(jù)移動(dòng)的功耗。在使用層面,Qualcomm致力于優(yōu)化硬件、軟件和編譯器,從而減少計(jì)算的冗余并最大化計(jì)算吞吐量和內(nèi)存帶寬。

韋靈思補(bǔ)充道:“由硬件、軟件和算法構(gòu)成的生態(tài)系統(tǒng)對(duì)我們來說至關(guān)重要。高效的硬件將不斷演進(jìn),以適應(yīng)在人工智能領(lǐng)域出現(xiàn)的全新算法。”

他進(jìn)一步講到:“我們關(guān)注如何在硬件上更高效地運(yùn)行卷積神經(jīng)網(wǎng)絡(luò),以及為高效運(yùn)行神經(jīng)網(wǎng)絡(luò)而開發(fā)更高效的新硬件。在算法方面,確保算法在驍龍平臺(tái)上的高效運(yùn)行。這一切都需要通過軟件工具來實(shí)現(xiàn),也就是我們的驍龍神經(jīng)處理SDK。大家可以將軟件看成是連接硬件和算法之間的橋梁。比如說,你在驍龍平臺(tái)上構(gòu)建你最喜歡的模型,或進(jìn)行你最喜歡的人工智能測試,當(dāng)你將模型放到神經(jīng)處理SDK中,這些可用的軟件工具將幫助你進(jìn)行壓縮和量化,從而確保你的模型或測試在驍龍平臺(tái)上高效運(yùn)行。”

THEEND

最新評(píng)論(評(píng)論僅代表用戶觀點(diǎn))

更多
暫無評(píng)論