2019年人工智能的10大趨勢

伯俊軟件
人工智能正在開始改變電信,電信網(wǎng)絡優(yōu)化是一套改進延遲、帶寬、設計或架構(gòu)的技術(shù)——能以有利方式增加數(shù)據(jù)流的技術(shù),對于通信服務提供商來說,優(yōu)化可以直接轉(zhuǎn)化為更好的客戶體驗,除了帶寬限制之外,電信面臨的最大挑戰(zhàn)之一是網(wǎng)絡延遲,像手機上的AR/VR等應用,只有極低的延遲時間才能達到最佳的功能。
  一、開源框架(Open-Source Frameworks)
 
  人工智能進入門檻比以往任何時候都低,這要歸功于開源軟件。2015年谷歌開放了其機器學習庫TensorFlow,越來越多的公司,包括Coca-Cola、e Bay等開始使用TensorFlow。2017年Facebook發(fā)布caffe2和Py Torch(Python的開源機器學習平臺),而Theano是蒙特利爾學習算法研究所(Mila)的另一個開源庫,隨著這些工具的使用越來越廣泛,Mila公司已經(jīng)停止了對Theano的開發(fā)。
 
  二、人工智能終端化
 
  人工智能技術(shù)快速迭代,正經(jīng)歷從云端到終端的過程,人工智能終端化能夠更好更快地幫助我們處理信息,解決問題,我們舍棄了使用云端控制的方法,而是將AI算法加載于終端設備上(如智能手機,汽車,甚至衣服上)。
 
  英偉達(NVIDIA),高通(Qualcomm)還有蘋果(Apple)等諸多公司加入了對終端側(cè)人工智能領域的突破和探索,2017和2018年是眾多科技公司在人工智能終端化進入快速發(fā)展期的兩年,同時他們也在加緊對人工智能芯片的研發(fā)。但AI依然面臨著儲存和開發(fā)上的困境,亟需更豐富的混合模型連接終端設備與中央服務器。
 
  三、人臉識別
 
  從手機解鎖到航班登機,人臉識別的應用范圍愈發(fā)廣泛,各國對于人臉識別的需求逐漸升高,不少創(chuàng)業(yè)公司開始關(guān)注這一領域,利用該技術(shù),可以通過臉部特點從而還原蒙面嫌疑犯完整的人臉。但人臉識別仍有待改進。這一技術(shù)仍會對人臉真假存在誤判。人臉識別中所包含的數(shù)據(jù)遠比我們想象要多,其中的安全問題也應引起我們關(guān)注。
 
  四、AI聊天機器人
 
  盡管許多人把聊天機器人看成是AI的代名詞,但兩者依然存在差別。如今的AI聊天機器人已經(jīng)進化得十分完善,與真人對話時甚至還會應用“嗯...”這一類口頭語和停頓,但人們擔憂這些機器人的行為過于逼真,開始考慮在對話時對其聊天機器人的身份進行確認說明的需要。國外的科技巨頭FAMGA(Facebook,Apple,Microsoft,Google與Amazon)以及國內(nèi)的BAT都把目光投向了這一領域。
 
  五、后臺自動化
 
  人工智能正在推動管理工作走向自動化,但數(shù)據(jù)的不同性質(zhì)和格式使其成為一項具有挑戰(zhàn)性的任務。根據(jù)行業(yè)和應用程序的不同,自動化“后臺任務”的挑戰(zhàn)可能是獨一無二的,例如,手寫的臨床筆記對自然語言處理算法來說就是一個獨特的挑戰(zhàn)。機器人過程自動化(RPA)一直是熱門話題,雖然并非所有的機器人過程自動化都基于機器學習,但許多都開始將圖像識別和語言處理集成到它們的解決方案中。
 
  六、綜合訓練數(shù)據(jù)
 
  對于訓練人工智能算法來說,訪問大型的、標記的數(shù)據(jù)集是必要的,合成數(shù)據(jù)集可能會成為解決瓶頸問題的關(guān)鍵,人工智能算法依賴數(shù)據(jù),當一些類型的現(xiàn)實世界數(shù)據(jù)不易被訪問時,合成數(shù)據(jù)集的用武之地就體現(xiàn)出來,一個有趣的新興趨勢是使用AI本身來幫助生成更“逼真”的合成圖像來訓練AI,例如,英偉達使用生成對抗網(wǎng)絡(GAN)來創(chuàng)建具有腦腫瘤的假MRI圖像。GAN被用于“增強”現(xiàn)實世界數(shù)據(jù),這意味著AI可以通過混合現(xiàn)實世界和模擬數(shù)據(jù)進行訓練,以獲得更大更多樣化的數(shù)據(jù)集。此外,機器人技術(shù)是另一個可以從高質(zhì)量合成數(shù)據(jù)中獲益的領域。
 
  七、零售
 
  走進一家商店,挑選你想要的東西,然后走出去,這幾乎“感覺”就像在行竊,人工智能可以杜絕真正的盜竊行為,并讓免結(jié)賬手續(xù)零售變得更加普遍。盜竊一直是美國零售商的一大痛點,然而,當你掌握進出商店的人,并自動向他們收費時,有人入店行竊的可能性就會降到最低。其余一些需要考慮的事情是如何利用建筑空間,特別是在擁擠的超市,確保攝像機被最佳地放置來追蹤人和物品。
 
  八、電子商務搜索
 
  對搜索詞的上下文理解正在走出“實驗階段”,但要廣泛采用搜索詞還有很長的路要走,當使用電子商務搜索來顯示相關(guān)結(jié)果時,使用適當?shù)脑獢?shù)據(jù)來描述產(chǎn)品是一個起點。僅僅描述和索引是不夠的,許多用戶用自然語言搜索產(chǎn)品(比如“沒有紐扣的洋紅色襯衫”),或者不知道如何描述他們在尋找的商品,這使得電子商務搜索的自然語言成為一個挑戰(zhàn)。
 
  九、網(wǎng)絡優(yōu)化
 
  人工智能正在開始改變電信,電信網(wǎng)絡優(yōu)化是一套改進延遲、帶寬、設計或架構(gòu)的技術(shù)——能以有利方式增加數(shù)據(jù)流的技術(shù),對于通信服務提供商來說,優(yōu)化可以直接轉(zhuǎn)化為更好的客戶體驗,除了帶寬限制之外,電信面臨的最大挑戰(zhàn)之一是網(wǎng)絡延遲,像手機上的AR/VR等應用,只有極低的延遲時間才能達到最佳的功能。
 
  電信運營商也在準備將基于AI的解決方案集成到下一代無線技術(shù)中,即5G,三星收購了基于AI的網(wǎng)絡和服務分析初創(chuàng)公司Zhilabs,為5G時代做準備,高通認為人工智能邊緣計算是其5G計劃的重要組成部分(邊緣計算可減少帶寬限制并與云進行頻繁通信,這是5G的主要關(guān)注領域)。
 
  十、車輛自動化駕駛
 
  盡管自動化駕駛的汽車市場潛力巨大,但實現(xiàn)全自動的未來依然不明朗。自動化駕駛成為了科技公司和初創(chuàng)公司互相競爭的新領域,他們?yōu)榇俗⑷氲牟粌H有新的活力,還有大量的投資。投資者對他們的決定十分樂觀,數(shù)個自動駕駛汽車品牌所獲得的投資總額已超百億,預計2025年其市場利潤能達800億美元,物流等相關(guān)行業(yè)會成為首批應用全自動駕駛的行業(yè),預計可縮減三分之一的成本。
THEEND

最新評論(評論僅代表用戶觀點)

更多
暫無評論