人工智能(AI)和機(jī)器學(xué)習(xí)(ML)一直是人們熱議的焦點(diǎn)。大型跨國(guó)工業(yè)企業(yè)正在擁抱人工智能,努力讓機(jī)器更智能,這樣它們就能在正在進(jìn)行的數(shù)字工業(yè)革命中有效競(jìng)爭(zhēng)。
我們時(shí)不時(shí)就能看到這些公司如何在人工智能和工業(yè)分析方面進(jìn)行重大投資,以幫助推動(dòng)其數(shù)字化轉(zhuǎn)型。但即使是中小型工業(yè)和制造業(yè)企業(yè)也應(yīng)該考慮人工智能。
自主化有多重要
畢竟,如果你不考慮機(jī)器學(xué)習(xí)和人工智能,為什么要從生產(chǎn)系統(tǒng)中收集所有這些數(shù)據(jù)?在許多情況下,企業(yè)收集的數(shù)據(jù)超過(guò)了它們的使用能力。數(shù)據(jù)分析本身并不是目的,一定是用來(lái)發(fā)現(xiàn)問(wèn)題、解決問(wèn)題。而人工智能將在這方面發(fā)揮關(guān)鍵和不斷擴(kuò)大的作用。
當(dāng)然,機(jī)器學(xué)習(xí)可以在清理堆積如山的大數(shù)據(jù)中發(fā)揮重要作用,以識(shí)別重要規(guī)律,并為業(yè)務(wù)轉(zhuǎn)型挑選出有價(jià)值的見(jiàn)解。但這只是其優(yōu)勢(shì)的一部分。真正的價(jià)值來(lái)自使用人工智能來(lái)利用這些見(jiàn)解,真正的應(yīng)用到你的采購(gòu)、生產(chǎn)和銷售過(guò)程中。
比如生產(chǎn)線計(jì)劃會(huì)因資源可用性的變化而自動(dòng)調(diào)整,并在整個(gè)供應(yīng)鏈中管理這種變化,以避免中斷或沖突。隨著全球供應(yīng)鏈變得越來(lái)越復(fù)雜,這種由人工智能驅(qū)動(dòng)的智能將在幫助企業(yè)在“隨需應(yīng)變/隨時(shí)應(yīng)變”的市場(chǎng)競(jìng)爭(zhēng)中發(fā)揮關(guān)鍵作用。
AI也分大小
看起來(lái),AI承擔(dān)巨大責(zé)任,對(duì)中小型制造企業(yè)來(lái)說(shuō)有點(diǎn)遙不可及。
實(shí)際上AI也有“大”和“小”之分。大型人工智能使用大量數(shù)據(jù)(通常在云計(jì)算中),是從全局考慮,跨多個(gè)業(yè)務(wù)線,解決真正復(fù)雜的問(wèn)題。這正是像通用電氣這樣的全球巨頭所做的。
而小型人工智能專注于解決“微問(wèn)題”,比如弄清楚如何優(yōu)化一條生產(chǎn)線,同時(shí)滿足最小化人機(jī)協(xié)同的需求。小人工智能可能更好地處理在內(nèi)部問(wèn)題,它是實(shí)時(shí)的,基于邊緣分析,高度可用的系統(tǒng)驅(qū)動(dòng)智能自動(dòng)化。
當(dāng)然,有效利用人工智能的第一步是讓你的基礎(chǔ)設(shè)施跟上速度。這通常意味著升級(jí)你的網(wǎng)絡(luò),讓信息流動(dòng)和系統(tǒng)在邊緣處理事情。只有到那時(shí),部署傳感器來(lái)收集數(shù)據(jù)和分析才有意義。最后,這種進(jìn)步也許會(huì)需要雇傭數(shù)據(jù)科學(xué)家來(lái)優(yōu)化你的環(huán)境,以充分利用人工智能的優(yōu)勢(shì)。
許多工業(yè)企業(yè)正處于這一進(jìn)程的起點(diǎn)站??紤]到能源、交通、制造和電信等行業(yè)數(shù)字化轉(zhuǎn)型的需求和速度,把人工智能放在你的業(yè)務(wù)背景下考慮——即使從小做起——也很有意義。